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Introduction 
The MR spectroscopy (MRS) method gives a comprehensive window into tissue biochemistry 
and interrogates cancer tissue for diagnostic and prognostic markers. In vivo MRS adds to 
MRI information when describing tissue abnormalities in patients. For tissue specimens, 
studies have shown that ex vivo MRS can characterize tumors (1-3). Conventional MR 
spectroscopy of biopsies has been shown to classify cancer tissue from cervix (4,5) and breast 
(6) cancer patients. 
 
Increased spectral resolution gives more detailed metabolic information than conventional 
MRS analysis. High resolution magic angle spinning (HR MAS) MRS has been used to study 
intact tissue specimens since 1996 (7). HR MAS MRS is a high-throughput technology with 
the potential of becoming fully automated. It has a high degree of reproducibility, and its non-
destructive nature allows specimens to be evaluated by microscopy after spectral analysis, 
making direct comparisons to morphologic characteristics feasible. Findings from brain (8-
11), cervical (12,13), breast (14), and prostate cancer (15-18) have proven MAS as a 
promising tool in cancer diagnosis and treatment monitoring. 
 
High-resolution MAS MRS studies are still performed in research programs, however, clinical 
studies have started to explore the value of the method for clinical diagnosis and treatment 
monitoring. The objectives of this presentation are to describe the HR MAS MRS techniques 
used for cancer specimens, and present some results that can be obtained in diagnosis of 
different cancer types. 
 
 
Clinical Motivation 
Despite research efforts and identification of many putative good prognostic factors, few of 
them are proving clinically useful for identifying patients at minimal risk of relapse, patients 
with a worse prognosis, or patients likely to benefit from specific treatments. Adjuvant 
chemotherapy and hormonal treatment improve survival for breast cancer patients but have 
potentially serious side effects, and are costly. Because adjuvant treatment should be given to 
high-risk patients only, and traditional prognostic factors as lymph node status and tumor size 
are insufficiently accurate, better or supplementary predictors of high-risk and treatment 
response are needed. Several new experimental methods in addition to MR determined 
metabolic pattern are being explored to improve diagnostic and prognostic information. These 
methods comprise among others, immunohistochemistry, gene expressions arrays, and protein 
arrays. Successful diagnosis and cancer treatment of the future are being developed with a 
focus on the molecular targets underlying the pathophysiology of neoplasia. These targets 
might be defined on the basis of genetic, protein and metabolic techniques, which define 
targets expressed as a result of a tumor's differentiation state or tissue of origin; or targets 
mediating drug uptake or metabolism (19).  
 
Correlation of MR spectra to patient diagnosis and histopathology have been established by 
conventional MR spectroscopy of intact tissue samples (2,5,6). However, spectral resolution 
in such spectra is low and the biochemical information thereby limited. MR spectra of cell or 
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tissue extracts provide detailed information on chemical composition, but at the cost of tissue 
destruction and possibly modified composition. An advantage of HR MAS tissue analysis is 
the possible translation to in vivo MRS examination of patients. Specific metabolic features 
found in tissue analyses might be mapped in vivo using single volume or spectroscopic 
imaging techniques. 
 
 
High-resolution magic angle spinning (HR MAS) 
Tissue can be considered as a semisolid giving broad line in ex vivo spectra obtained by 
conventional MR spectroscopy. The lack of molecular mobility leads to anisotropic 
interactions, imposing a spin orientation dependence on the MR frequency (20). Anisotropic 
interactions consist of direct homonuclear and heteronuclear magnetic dipolar interactions, 
indirect electron coupled interactions, electric quadrupolar interactions and electron shielding 
interactions.  
 
Andrew et al. (21) and Lowe (22) first described the 
narrowing of MR lines when solids were spun at the 
magic angle. Line broadening in solids can be 
reduced by spinning the sample rapidly about an 
axis inclined 54.7° to the direction of the static 
magnetic field (Figure 1). The spinning splits the 
broad resonance into a narrow line at the isotropic 
resonance frequency and spinning sidebands (23). 
All spin interactions become time-dependent and 
sidebands appear at integer multiples of the 
spinning rate. The time independent part of the 
anisotropic interactions is dependent on (3cos2θ-1) 
and is cancelled by the choice of angle. The time 
dependent anisotropic interactions average over a 
rotation period. If the spinning rate is much larger 
than the anisotropic spin interaction, the sidebands 
are well separated from the central line and their 
intensity decrease with increasing spinning rate. As 
a consequence, anisotropic interactions are averaged 
to their isotropic value, resulting in substantial line 
narrowing.  

Figure 1: Schematic presentation of a 
sample in a magic angle spinning probe. θ 
is the magic angle, 54.7 °, B0 is the static 
magnetic field. 

 
Although narrower lines are obtained because of the MAS effect, large molecules like 
proteins and lipids appear as broad signals in the HR MAS spectrum. A common method to 
reduce these broad signals is by utilizing their short T2 relaxation times. Suppression of 
signals with short T2 values can be performed using a spin-echo sequence with long echo 
times for acquisition (24).  
 
 
 
Metabolites detected with 1H MAS MR spectroscopy in cancer specimens 
Biological samples, such as cancer tissue, comprise a vast amount of MR detectable 
compounds and the resulting high field proton MR spectra can be very complex (Figure 2).  
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Figure 2:  The resolution of MAS spectra from intact breast cancer tissue (A) is comparable to spectra of 
PCA extracts (B) from breast cancer specimens. Some of the assigned metabolites are: –CH3 fatty acids (1), 
lactate (9, 68), –CH2-CH3 fatty acids (10), creatine (35, 60), choline (40), phosphocholine (41), 
glycerophosphocholine (42), taurine (44, 47), myo-inositol (45, 50, 53), scyllo-inositol (46) and glucose 
(70). For complete assignments please see reference (Sitter B et al. NMR in Biomed 2002). The spectra 
were acquired at a Bruker AVANCE DRX600 instrument. The MAS spectrum was obtained using a spin 
echo sequence with an echo time of 285 msec. 

 
Assignment of signals in HR 
MAS spectra are performed 
using published data, two-
dimensional MR-techniques 
such as COSY and J-resolved 
spectroscopy, and spiking of 
samples. The latter method 
may be inaccurate in tissue 
samples, since the 
metabolites and authentic 
standards can be in different 
compartments and therefore 
give rise to slightly different 
chemical shifts. Several 
papers have attempted to 
assign signals in HR MAS 
spectra of cancer, including 
breast cancer (25), high grade 
gliomas (9), prostate cancer 
(18) and cervical cancer (12). 
 
The effect of using a spin-
echo sequence for acquisition 
of spectra to reduce 
contribution of broad signals 
can be seen in Figure 3.  
 

Figure 3:  Spectral region 4.70 to 2.90 ppm from three different 
spectra of breast cancer tissue. A: MAS spectrum acquired using a 
standard acquisition, B: MAS spectrum from the same sample as in A 
recorded using a spin-echo sequence with 285 ms total echo time and 
C: spectrum of an breast cancer tissue extract. Some peak assignments 
are given in B, the following abbreviations are used: β-Glc; β-glucose, 
Lac; lactate, Cr; creatine, m-Ino; myo-inositol, Gly; glycine, Tau; 
taurine, s-Ino; scyllo-inositol, GPC; glycerophosphocholine, PC; 
phosphocholine and Cho; choline. 
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Data Interpretation 
Different approaches are used to investigate HR MAS MR spectra. Spectral characteristics 
can be explored by examining peak intensities or peak areas. Peak areas can be obtained by 
integration or, in spectra where peaks are overlapping, by deconvolution (26). Peak-by-peak 
investigations to extract information have been useful in many studies, and makes direct 
comparison between chemical and biological features possible (3,4,27-29).  
 
Quantitative determination of metabolite concentration in biological tissue is a challenge. 
Metabolites of interest can be quantified by comparing peak areas to an internal reference like 
water (30,31) or to an added reference (14,32,33). The method of referring the signals to 
internal water for calibration is not applicable in tissues with highly variable amounts of 
water. Added TSP as a reference has its limitations, as TSP can be associated to components 
in tissue, and thus induce decreased “NMR-visibility”. Wu (33) and Taylor (32) have 
presented a method using a small silicon rubber within the sample volume for quantification. 
As the silicon rubber should not be in contact with the sample, this method is incompatible 
with sample preparations involving complete filling of the rotor volume. The ERETIC method 
(Electronic reference to access absolute concentrations directly) relies upon the generation of 
a defined frequency and amplitude by a broad-band antenna in the magnet of the MR-
spectrometer, and thus provides an electronically synthesized reference signal (34). Such a 
method has yet to be implemented in combination with HR MAS. 
 
Spin-echo experiments are commonly used in MAS studies of biological samples to suppress 
broad resonances, and will cause a T2 dependence of all metabolite signals that must be 
corrected for when quantifying the metabolites. This can be done by calculating individual T2 
for each peak and correct for the signal reduction of all the signals of interest. It is also 
important to ensure full T1 relaxation in quantitative HR MAS experiments. 
 
MR spectra from biological samples are often investigated with respect to a specific disease. 
Characterization of spectral findings from the disease can be attempted by comparisons 
between samples from different stages or to controls. Several MR spectroscopic studies have 
shown that almost all resonances influence the spectral patterns (35,36) and visual inspection 
of such spectra yield limited information from the available data. Recently, the term 
metabolomics has been introduced, defined as the complete set of metabolic components in a 
specific cell or tissue type, varying according to the physiological or pathological state of the 
system (37,38). Metabolomic strategies most often involve the combined use of multivariate 
statistics and an analytical technique. Multivariate data analysis is used for a number of 
purposes, which roughly can be divided into three groups: exploration, classification and 
prediction. The approaches where multivariate analysis is employed can be described as 
supervised and unsupervised. 

 Unsupervised analysis is typically used for data exploration and classification, where 
samples are analyzed purely on the basis of the input variables, without the addition of 
previous knowledge. These input variables might be the relative intensities from a 
complete or selected region of spectra.  

 Supervised analysis directly utilizes previous knowledge about patterns, groups or 
other related/measured variables. The purpose is often some kind of prediction, where 
the goal can be to predict class membership of future samples.  

 
Principal component analysis (PCA) is a common unsupervised method (35,36,39,40). The 
objective of PCA is to convert the multiple and possibly correlated parameters from the 
measurements to a non-correlated and much smaller set of parameters (35). PCA creates 
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linear combinations from the original spectra based on the variance, leading to a reduced set 
of independent variables describing the original data set. The projections of the samples 
(individual spectra) onto the PCs are defined as scores, which reveal relationships between 
samples. In the graphic representation, called score plot, similar samples will group together 
in clusters. Another graphic representation useful for interpretation of the modeling is the 
loading profile, which connects the PCs to the original variables. Variables close to the origin 
in this plot carries little information in the PC, while variables with larger distance from the 
origin (high loading) are important in the interpretation. 

  
-0.1

0

0.1

0.2

0.3

1 264 527 790 1053 1316 1579 1842 2105 2368

X-variables

Cr

CrGPCho

PCho

Cho

Gly

Ala
G luGlu

Tau

β-Glc
Sugars, am ino acids

 
A      B 
 

Figure 4: Score plot (A) and corresponding loading profile of PC1 (B) from principal component analysis 
(PCA) of the spectral region 4.1 – 1.4 ppm from spin-echo MAS spectra of biopsies from cervix from 16 
patients. X denotes cervical cancer tissue, while O denotes cervix tissue from non-cancer patients. The 
cancer samples are clearly separated from the controls. The loading profile shows that the samples from 
patients with cervical cancer may be associated with higher concentrations of cholines, creatine, taurine and 
alanine. In addition, the cancer samples seem to have lower levels of glucose. 

 
Soft independent modeling of class analogy (SIMCA) is a method for supervised pattern 
recognition (classification), and 
partial least squares regression 
(PLS), a related method for 
prediction. These methods will not 
be further discussed in this summary.  
 
Artificial neural networks are 
electronic models based on the 
neural structure of the brain. The 
structure of a general neural network 
consists of nodes in three types of 
layers: input, hidden and output 
layer. (See structure of a 
probabilistic neural network in 
Figure 5) 

Figure 5: Structure of a probabilistic neural network 

 
The number of input nodes will be equal to the number of input variables, and the number of 
output nodes depends on the number of outputs sought. Neural networks are able to detect and 
model nonlinear relationships, which may be an important property when working with 
complex data.  
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One of the pioneer publications on HR MAS of human tissue was a study of human lymph 
nodes presented by Cheng and coworkers in 1996 (7). The HR MAS technique was shown to 
provide highly resolved spectra from intact tissue samples. It has later been applied in 
numerous types of tissue, and provided detailed descriptions of the chemical composition of 
healthy and affected tissue from kidney (41,42), brain (8,43) and prostate (18). A study of 
human kidney has provided classification of renal carcinomas (44) while MAS studies of 
brain tissue have shown that specific metabolites and metabolite ratios correlate to density of 
specific cell types (45) and fraction of cancerous and necrotic areas (46). Also in MAS studies 
of prostate tissue, metabolite concentration has been found to correlate to tissue composition 
(15,31). MAS MR spectra could also discriminate malignant prostate from healthy glandular 
tissue (15). A study on breast cancer tissue (47) has showed that breast carcinomas could be 
distinguished from non-involved breast tissue based on intensities and T2 relaxation values of 
cellular metabolites. Recent work from our group shows that breast cancer biopsies can be 
classified according to tumor grade and lymph node status (14). Classifiers, which objectively 
could provide rapid and reliable information for determination of prognostic indicators 
simultaneously with the diagnosis of primary pathology and lymph node involvement, would 
obviously be beneficial. 
 
The HR MAS technique is now also being explored as a tool for assessing treatment effects. 
Studies involving chemotherapeutic agents have been presented on cell lines (48), animal 
models (49-52) and tissue samples (53) in order to reveal molecular mechanisms and monitor 
treatment effects.  HR MAS spectra have indicated binding between the drug hederacolchiside 
A1 to melanine in melanoma cell lines (48). Altered phospholipid mechanisms were found in 
a mouse melanoma model as response to chemotherapy (50,51). Gene-therapy induced 
apoptosis in BT4C rat gliomas has been characterized with increased levels of lipids and 
small metabolites (49,52). Altered phospholipid mechanisms have also been found in a study 
on liposarcoma cell line (53). In the same study, tissue samples from patients that received 
this drug were compared to samples from patients treated with surgery alone. This study 
indicates that HRMAS might have the potential of predicting good responders. 
 
  
Future directions 
HR MAS MR spectroscopy has been established as a valuable tool in cancer research. The 
clinical value of the method is not fully addressed, but clinical studies have been started. The 
results of such studies are important for the role of HR MAS MR spectroscopy as a method 
for providing clinical information on diagnostic and prognostic markers in cancer treatment. 
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